(一)、移动式液压顶升系统的发展趋势
1)机、电、液一体化:充分合理利用机械、电子、液压方面的技术整个液压顶升系统的完善。
2)液压元件集成化、标准化:集成的液压系统减少了管路连接,防止泄漏和污染。标准化的元件为设备的维修带来方便。
3)液压顶升系统系列化:抬升能力从100至1600吨不等,可根据实际需要选择;抬升能力、抬升高度均可任意定制。
4)液压提升系统模块化、组合化:用模块化设计代替传统的整机设计方法,将起重机上功能基本相同的构件、部件和零件制成有多种用途,有相同联接要素和可互换的标准模块,例如高度呈现系统、水平呈现系统、液压同步系统、小车侧移系统、智能无线控制系统,通过不同模块的相互组合,形成不同类型和规格的起重机。对起重机进行改进,只需针对某几个模块。设计新型起重机,只需选用不同模块重新进行组合。可使单件小批量生产的起重机改换成具有相当批量的模块生产,实现效率的化生产。达到改变整机性能,降低制造成本,提高通用化程度,用较少规格数的零部件组成多品种、多规格的系列产品,充分满足用户需求。
5)液压顶升系统自动化、智能化:将机械技术和电子技术相结合,将的计算机技术、微电子技术、液压技术及模糊控制技术应用到机械的驱动和控制系统,为液压顶升系统的自动化和智能化提供了充分的条件。自动化、智能化应能够实现对系统的自动诊断和调整,具有故障预处理的功能。例如现在已使用的智能起重遥控操作系统,该系统具有遥控自动同步操作功能和实时的荷载监控功能。如果液压顶升系统出现不同步现象,该系统将会自动做出矫正,如果系统识别出物体超重,就会自动中断起重。
(二)、液压同步顶推顶升技术实际施工案例分析
1、案例基本情况选择实际施工案例,对液压同步顶推顶升技术的应用进行了分析。本次研究选择的桥梁施工案例,其桥梁长度为4574.08m,桥梁整体由48个梁段组成,考虑到梁段长度以及钢板厚度因各类不同因素分成了多种类型,故施工计划的设计中,将临时桥墩数量定为10个左右,并相应给每一部分桥墩都配备了液压提升装置。
在确认预拼胎架布置在合适位置上且选择的跨端符合工程实际情况以后,在此基础上,再进行后续整体钢结构节间以及区段的预拼装工作,从而依次育序的逐步完成顶推的积累式安装多点式的液压同步顶推顶升系统,应该先优先针对已安装完毕的钢箱结构梁采取顶推措施,并从起始组为起点,逐步进行后续的连续性顶推顶升工作,上述工作完成之后,肉按照顺序以此对其他各部分钢箱结构梁采取顶推顶升工作,完成之后,即可调整桥梁整体部分的线性结构,并使用对接措施将各段逐渐合拢,完成施工。
结合文所述,桥梁施工中液压同步顶推顶升技术主要有单点和多点施工两种方式。本次选择的桥梁施工案例,按照结构划分,为大型斜拉索式连续钢箱梁结构桥梁,故实际施工采用了多点式的液压同步顶推顶升技术。
2、同步液压顶升设备的构成与运作方式。液压同步顶推顶升系统的组成在上文中已作出过分析,简单来看,主要包括了各项传感器与控制器等原件。利用电磁换向阀决定液压站的输出压力以及驱动钢运作方向。利同步顶升液压系统,完成对各部分顶推缸的同步位移。
3、桥梁施上过程分析本次选择的案例桥梁在施上时主要使用了整体式的液压同步顶推顶升法,并综合采用了GPS定位系统和空间三角网点技术完成了桥梁结构的整体测绘巨作,并进一步确认了顶推缸与其他相关附加设备与顶推顶升设备。液压系统的安装结构包含了顶推缸、钢箱梁、导轨、顶升缸及临时墩共同构成。
针对一部分的临时墩,先使用纵向支撑钢的同步顶升作用力,将其导梁提升到预定高度,在预定压力条件下,使顶推缸产生顶推力,并进一步利用该作用力实现对临时墩两边的顶推缸的充分控制,然后完成同步式顶推。在上述顶推工作完成后,确认全部顶推缸的所在位置处于同一行程点后,继续进行顶推,直到满足预定施工方案为止。
在使用过焊接拼装与顶推处理后,钢箱梁的导梁基本被顶推作用推动到了索塔周围区域,为了与施工方案保持一致,所育白勺变形量都应该使用全站仪进行检测,提高身佳确度。等到导梁安置完毕,到达索塔预定地点之后,再采取相应的调整措施对临时墩进行处理。与此同时,同样对索塔所在位置上的支撑钢采取调整措施,确认钢箱梁的位置符合预定施工方案要求后,继续重复这一步骤,直到临时墩同索塔顶推缸预定压力值保持一致位置。
将上述施工环节进行合理循环,指导桥体所有梁均到达施工方案确定的位置后,即可完成施工。
考虑到液压同步顶推顶升技术本身具有诸多优点,故能够较为的满足不同桥梁施工环境的需要。我国桥梁施工中,大部分为中等规模的跨度桥,在架梁吊装技术还未完善的基础上,液压顶推顶升技术恰好完善了施工缺陷。该技术的实际应用,还应当结合桥梁施工实际清况进行具体调整。