【一】、液压提升装置过载或过热运行损坏的原因对策
1、原因:
由于液压顶升机长时间过载或过热运行,绕组绝缘老化加速,绝缘薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。
2、对策:
尽量避免电动机过载运行;电动机洁净并通风散热良好;避免电动机频繁启动,时需对电机转子做动平衡试验。
液压提升装置主要使用在含煤尘和易燃、易爆气体的煤矿井下或井口,是其基本的功能,液压提升机械电控系统与电控式提升装置电控系统相比为简单,问题易解决。因为液压提升装置由液压系统来实现矿井负载的提升与下放及其速度控制与调节,液压系统本身具有欠压、超载、过速、限速、井口减速、过卷停车等各种保护功能,二层制动性能优良,且提升、下放制动力矩可分别调定。因此驱动其主、辅助油泵的电动机只需朝一个方向旋转,不像电控式提升装置那样电机有正、反转要求;液压提升装置的主、辅助油泵为空载起动,起动设备可为简单;两液压泵的起动顺序是先起动辅助油泵,再起动主液压泵,其相应电机的磁力起动可利用控制回路中继电器的辅助触点联锁。
【二】、防爆液压提升机运行控制存在的技术问题
目前防爆液压顶升虽然在降低能耗与噪声、控制漏油污染、提高运行工作效率和工作可靠性等方面,已有不少研究成果得到推广与应用,促进了提升机的发展,但在实际生产中,因为液压提升机存在的一些难以克服的原理性问题,对液压提升机的使用和煤矿的生产仍有较大的威胁,其主要表现在以下几个方面:
(1)变量泵控定量液压马达的容积式调速回路可控性差
压提升机采用的是变量泵控定量液压马达的容积式调速回路,导致液压提升机的可控性差,平层精度很低,冲击振荡显著,提升效率低。
液压提升器这种调速方式是开环控制,马达的输出转速依靠系统的调节精度控制,无转速反馈。但因为在整个液压伺服控制系统中,诸如减压式比例阀和比例油缸等控制元件都存在较大的死区等非线性因素,液压泵、马达的容积效率也随系统的压力、油液粘度及温度等的变化而变化,加之液压油的可压缩性、管路的弹性、液压元件的泄漏等因素,从而使输入液压马达的流量不稳定,因此液压马达的输出动态参数根本难以得到准控制;提升机的启动、加速、匀速和减速停车等不同阶段的控制只能仅凭司机手动操作控制,许多隐患也由此而生,如液压提升机的平层精度很低,难以满足规定的误差值(±50mm),提升容器的累积误差较大,并且要靠司机一次或多次微动操作才能使提升容器达到规定停靠位置,严重影响了提升效率。
(2)液压顶升设备的液压驱动回路与制动回路的动作存在协同性问题
在液压提升机加速起动、减速停车的瞬间,司机操作减压式比例阀向液压驱动系统与制动系统同时发出控制信号,驱动系统液压马达输出转速与输出扭矩逐渐动态地建立,同时液压制动系统松闸或抱闸制动,两者协同配合实现负载的升降。但因为液压驱动系统为泵控马达系统,而制动系统为阀控缸系统,相比之下,前者的响应速度慢很多,虽然在液压制动系统中设置有节流阀以调节制动、松闸时间,但因负载、油温等因素的影响,液压驱动系统扭矩、转速建立或降低时间均是个变量,从而引起常见的“上坡起动负载瞬时下滑”与停车时系统压力冲击现象,严重失控时往往对煤矿斜井人员的运输、井下作业人员的生命及生产造成严重威胁,甚至引起巨大的经济损失。
系统具有的制动是制动,没有二级制动,只是在系统停车和紧急停车时制动滚筒,不参与系统的调速,但系统在运行过程中,尤其在停车段,巷道的倾角会发生变化,提升机容器的运行速度仅靠司机人工控制,容易造成了停车松绳现象,影响系统的运行。
(3)液压提升机的自动化水平低,主要依靠人工操作和监控,效率低,性差液压提升机的控制主要依靠操作人员来监控指示器和运行速度值,手动操作减压式比例控制阀,向液压泵输入液压控制信号,从而改变泵输出及输入液压马达的液压油流量和它的输出转速,实现对提升容器的位置控制。这种操作方式自动化水平低,因为司机手工操作存在的随意性、和操作速度的不可重复性,影响提升机的准确平稳运行。液压提升装置元件故障分解:
1、动力元件供给的压力不够;
2、执行元件泄漏过大;
3、控制元件(压力控制阀)调节失灵;
4、油量不良,造成系统吸空(吸空会有泡沫)
5、油太脏,把某个阀给卡住了等等具我们分解液压设备的不足之一就是假设有故障,原因不易查找,只因液压泵传动的工作介质是液压油,液压油我们该做的好泄漏,马上判断是哪里泄漏。寻常原则还是由表及里、有简到繁、按系分段、检查推理。